DC Local Power Distribution with Microgrids and Nanogrids

June 8, 2015

Bruce Nordman
Lawrence Berkeley National
Laboratory
bnordman@lbl.gov

Ken Christensen
University of South Florida
christen@csee.usf.edu

Context

- "Local" within a building (or campus)
 - Not involving utility grid
- · "Power Distribution"
 - "Technology / infrastructure that moves electrons from devices where they are available to devices where they are wanted"

Grid terminology

Microgrid

Capability

"... a group of interconnected loads and distributed energy resources A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode" (US Dept. of Energy)

CIGRE defn. includes microgrids never connected to utility grid

Nanogrid

Simplicity

"A **single domain of power**; single voltage, frequency (if AC), reliability, quality, capacity (power), price, and administration. Storage is internal to a nanogrid." Generation forms its own nanogrid. (Nordman, 2010)

Picogrid

Singularity

An **individual device with its own internal battery** for operation when external sources are not available or not preferred, and managed use of the battery. (S. Ghai et al. in e-energy 2013; paraphrased)

Traditional power distribution

· Enormously complex but only lightly managed

Myth of uniform power availability

- Electricity is <u>not</u> equally available across space and time
 - Has long been true within utility grid
 - "Locational Marginal Price"
 - Increasingly true within buildings
 - Local storage and/or generation, islanded grids, or capacity constraints, combined heat-and-power
- Technology we have today presumes uniform availability
- · Dynamic pricing at meter a needed starting point
 - Grid can express preferences to customer

What is a Nanogrid?

- Smallest unit of power distribution
- Single physical layer (voltage; usually DC)
- Single domain: administration, reliability, quality, and price
- · Can interoperate with other local grids through gateways
 - Generation forms own nanogrid
 - Only two device types: grid controller and load
- In fully-functioning nanogrid, all links include communications
- Wide range in technology, capability, capacity

Scaling structure — communications and power

Paradigms

Old phone system	Internet
Utility grid	Local Power Distribution
19 th century	20 th /21 st century
Centralized	Distributed
No storage	Storage widespread
Tightly coupled	Loosely coupled
Entangled technology	Isolated technologies
Custom / Expensive	Commodity / Cheap

Power distribution & communications

"Technology / infrastructure that moves electrons from devices where they are available to devices where they are wanted"

- Important similarities between moving bits and moving electrons
- Important differences between moving bits and moving electrons

All bits/packets different; all electrons same

- · Routing power makes no sense
- · Only care about timing, location, quantity

Layered model for device operation for Local Power Distribution

Network Power Integration

LPD benefits

- Guarantee reliability locally with nanogrids only for critical loads
- Enable easy use of DC for many purposes
- Enable Direct DC, for efficiency, reliability
- Add generation, storage, and managed loads organically
- Local generation and storage plug-and-play
 - Inexpensive, easy to add/change
- Inter-building power links easy to implement
- · Can be a universal technology
- LPD inherently much more secure than alternatives
 - Only communicate with entities with direct wired connection

Open Questions

- How valuable would a shared medium be? What complications would that add?
- How valuable are multi-drop ports for end-use loads?
 What complications does that add?
- What higher capacity link technologies should be created?
- What from LPD could be applied to AC power systems?

Summary and Next Steps

- Nanogrids can be key to success of microgrids
 - Can be deployed faster, cheaper
- · Key missing technologies: pricing and gateways
 - May be achievable without new circuitry
- Success indicators. Utility grids are:
 - Smaller
 - Less reliable
 - Much less costly to society

Thank you

